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ABSTRACT

A recently implemented operational quantitative precipitation estimation (QPE) product, theMulti-Radar

Multi-Sensor (MRMS) radar-only QPE (Q3RAD), mosaicked dual-polarization QPE, and National Centers

for Environmental Prediction (NCEP) stage II QPE were evaluated for nine cool season precipitation events

east of the Rockies. These automated, radar-only products were compared with the forecaster quality-

controlled NCEP stage IV product, which was considered as the benchmark for QPE. Community Collab-

orative Rain, Hail and Snow Network (CoCoRaHS) 24-h accumulation data were used to evaluate product

performance while hourly automated gauge data (quality controlled) were used for spatial and time series

analysis. Statistical analysis indicated all three radar-only products had a distinct underestimate bias, likely

due to the radar beam partially or completely overshooting the predominantly shallow winter precipitation

systems. While the forecaster quality-controlled NCEP stage IV estimates had the best overall performance,

Q3RAD had the next best performance, which was significant as Q3RAD is available in real time whereas

NCEP stage IV estimates are not. Stage II estimates exhibited a distinct tendency to underestimate gauge

totals while dual-polarization estimates exhibited significant errors related to melting layer challenges.

1. Introduction

Multi-Radar Multi-Sensor (MRMS) quantitative precip-

itation estimation (QPE) products have been transitioned

into theNationalWeather Service (NWS) operations at the

National Centers for Environmental Predictions (NCEP;

Zhang et al. 2014). As part of this transition, a systematic

validation and verification effort is underway to char-

acterize the MRMS performance in meteorological,

aviation, and hydrological applications. For hydrological

applications, this includes evaluating product perfor-

mance for precipitation events during the warm and cool

season as well as in mountainous and less challenging

terrain. While other studies are currently in progress, this

report documents MRMS QPE performance east of the

Rockies during the 2013/14 cool season. While the cool

season represents a distinct challenge for evaluating radar

estimates because of radar beam overshoot (Smith

et al. 1996), frozen precipitation impacts on gauges

(Martinaitis et al. 2015), and brightband contamina-

tion (Smith et al. 1996) within the melting layer, there

is, nonetheless, a need to see how well the operational

precipitation estimate products handle these challenges.

Evaluations of QPE often involve an intercomparison

of radar precipitation estimates to rain gauge accumu-

lations (e.g., Steiner et al. 1999; Martinaitis et al. 2015);

hence, there are a number of limitations that must be

considered (Wilson and Brandes 1979; Krajewski et al.

2010). Ground clutter, blockage, and nonmeteorological

echoes can contaminate the lower-elevation scans; how-

ever, the extra information provided by dual-polarization

(Dual-Pol) radar data has been used by MRMS to miti-

gate these effects (Tang et al. 2014). Increased sampling

volume at greater distances (Steiner et al. 1999; Zhang

et al. 2012), beam overshoot and brightbanding in the

melting layer (Smith et al. 1996; Zhang and Qi 2010),

improper calibration, and use of improper reflectivity–

rain rate (Z–R) relationships (Wilson and Brandes 1979;

Steiner et al. 1999) can significantly affect radar-derived
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precipitation estimates. Conversely, blockages and poor

site placement (Sieck et al. 2007; Fiebrich et al. 2010),

gauge undercatch due to strong winds (Wilson and

Brandes 1979; Sieck et al. 2007), power outages pre-

venting data transmission (Martinaitis 2008), mechanical

malfunctions, and telemetry and transmission problems

(Groisman and Legates 1994;Marzen and Fuelberg 2005;

Kim et al. 2009) can contribute to gauge errors.

In this study, it was clear some of these error factors

were present. Analysis indicated a number of the auto-

mated reporting gauges were becoming clogged, or

‘‘stuck,’’ because of frozen precipitation (Martinaitis

et al. 2015) adversely affecting precipitation products

that used these gauges to adjust radar estimates. There-

fore, this paper documented the performance of the

MRMS radar-onlyQPE (Q3RAD; Zhang et al. 2014), the

mosaicked NWS operational Dual-Pol QPE (Giangrande

and Ryzhkov 2008), and the NCEP stage II (Lin and

Mitchell 2005) during the 2013/14 cool season over the

United States east of the Rockies. In turn, the product

performance was compared to a benchmark estimate, the

forecaster quality-controlled NCEP stage IV product.

2. Data and methodology

The precipitation events evaluated (Table 1) occurred

between December 2013 and February 2014 and had

significant areas of precipitation totals$50.8mm (2.00 in.)

and/or significant impacts due to frozen precipitation.

Upper-air, numerical model, and radar data combined

with radar precipitation and gauge totals were evaluated

for 24-h periods ending at 1200 UTC. Hourly and 24-h

radar-derived estimates R and gauge accumulations G

were compared at corresponding grid points (henceforth

called R/G pairs). Approximately 10 000 rain gauges

from a variety of national and regional networks are

ingested by the MRMS system, including 24-h precipi-

tation data from the Community Collaborative Rain,

Hail and Snow Network (CoCoRaHS) and hourly data

from theHydrometeorological AutomatedData System

(HADS). CoCoRaHS gauge totals are reported by

volunteer observers trained to monitor and report at

0700 local standard time each day the liquid and frozen

precipitation types measured by catchment rain gauges.

HADS gauges are automated, with the primary gauge

type being the heated tipping-bucket variety.

In this study, gauge performance challenges during

frozen precipitation were prevalent. Figure 1a shows the

Q3RAD 24-h precipitation estimate withMeteorological

Phenomena Identification Near the Ground (mPING)

crowd-sourcing reports (Elmore et al. 2014) and model

surface freezing lines (dashed lines) superimposed. The

purple bias ratio dots denote locations where gauge per-

formance was suspect. Approximately 80% of the suspect

gauges were located where frozen precipitation occurred

(see pink, white, and blue mPING symbols and model

surface temperature analysis); hence, the gauges likely

were stuck (Martinaitis et al. 2015). These gauges impacted

the MRMS Q3RAD gauge-corrected (Q3GC) product,

which was calculated by interpolating hourly radar–gauge

differences onto a grid (using inverse distance weighting;

see Zhang et al. 2016), which in turn are subtracted from

the hourly Q3RAD fields. Hence, Q3GC is quite de-

pendent on gauge accuracy, and stuck/suspect gauges sig-

nificantly impacted the products estimate, as shown in

Fig. 2. NWS analysis (not shown) indicated that a swath of

moderate to heavy snow fell from theTexasPanhandle into

Iowa, which can be seen in the Q3RAD estimate (Fig. 2a,

TABLE 1. Dates, precipitation types and reported totals, and short event summary for the nine precipitation events evaluated in the

study. The precipitation totals (in parentheses; pertaining to the type of precipitation listed before the parentheses) are for the 24-h period

ending at 1200 UTC for the given date.

Date Precipitation types and notable totals Synoptic summary

6 Dec 2013 Rain (25–100mm), freezing rain, sleet, and snow

(25–100mm)

Precipitation developed along/behind a strong cold front

7 Dec 2013 Rain (25–75mm), freezing rain, sleet, and snow

(50–250mm)

Precipitation developed along/behind stationary front

22 Dec 2013 Rain (100–250mm), freezing rain, sleet, and snow

(50–220mm)

Precipitation developed along/behind cold front

23 Dec 2013 Primarily rain (70–170mm) Precipitation developed along a slow-moving cold front

6 Jan 2014 Primarily snow (100–380mm) Precipitation developed along a cold front

29 Jan 2014 Rain (12–25mm), freezing rain (5–12mm), sleet,

and snow (25–75mm)

Precipitation, associated with upper trough, developed

over cold surface dome of high pressure

3 Feb 2014 Rain (50–125mm), freezing rain, sleet, and snow Precipitation developed along and behind a cold front

5 Feb 2014 Rain (30–80mm), freezing rain, sleet,

and snow (100–300mm)

Precipitation developed along and behind a stationary front

13 Feb 2014 Rain (25–60mm), freezing rain, sleet, and snow Precipitation, associated with upper trough, developed

over cold surface dome of high pressure
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white dashed oval) but was totally removed in the Q3GC

estimate (Fig. 2b) because of the stuck gauges. This type of

scenario was seen repeatedly during the winter, which led

to the development of new MRMS gauge quality-control

(QC) procedures (Martinaitis et al. 2015).

Hence, the Q3GC product was not evaluated in this

study. Instead, the following radar-only products were

evaluated: MRMSQ3RAD, mosaicked, Dual-Pol QPE,

and the NCEP stage II radar-based precipitation esti-

mates. A brief description of each product follows.

MRMS (Zhang et al. 2016) is a centralized radar data

processing system that integrates radar, rain gauge, and

numerical model data to generate a range of products

for operational use (Zhang et al. 2016). As part of the

process, reflectivity from the contiguous U.S. Weather

Surveillance Radar-1988 Doppler (WSR-88D) and En-

vironment Canada radars are integrated into a re-

flectivity mosaic. If there are multiple radar inputs for a

given grid point, a weighted mean based on the beam

position within the melting layer, then its height and

distance from radar is taken (Zhang et al. 2011, 2014).

Using the mosaicked reflectivity and numerical model

data, MRMS classifies radar echoes as one of seven

precipitation types. For each type, a unique Z–R re-

lation is used to calculate a rate that can be summed to

create precipitation estimates (see Table 2). MRMS

precipitation estimates are displayed on a 1km 3 1 km

Cartesian coordinate grid.

The operational Dual-Pol QPE algorithm not only

uses WSR-88D reflectivity, differential reflectivity ZDR,

and specific differential phase KDP data to estimate

precipitation, but also input from two other WSR-88D

algorithms: the Hybrid Hydrometeor Classification

(HHC) and the Melting Layer Detection Algorithm

(MLDA; Berkowitz et al. 2013). The HHC uses a fuzzy

logic approach, based on a set of processed interest

fields, to determine the most likely classification for an

echo at a given height above the ground and distance

from the radar (Park et al. 2009). TheMLDAuses initial

input from sounding or numerical model data to de-

termine the freezing level height, for example, the top of

the melting layer. If radar echoes are of sufficient cov-

erage and vertical depth, theMLDA utilizes reflectivity,

differential reflectivity, and correlation coefficient (CC)

to determine the likely top and bottom of the melting

layer (Giangrande and Ryzhkov 2008; Park et al. 2009).

A list of the precipitation classes and the relationships

used to calculate the precipitation rate are shown in

Table 3. Within MRMS, Dual-Pol QPE mosaics are

created by summing hourly Dual-Pol QPE accumula-

tions from the WSR-88D level III data. A ‘‘nearest

neighbor’’ approach is used to determine which Dual-Pol

quantitative precipitation estimates to assign to a grid

point. There was no attemptmade to smooth theDual-Pol

QPE discontinuities that resulted from such a mosaic, as

boundaries between radars highlighted any radar-to-radar

estimate inconsistencies that may be related to reflectivity,

differential reflectivity, or HHC differences. The Dual-Pol

QPE mosaic product is displayed on a 1 km 3 1 km Car-

tesian grid. Finally, Giangrande and Ryzhkov (2008) rec-

ognized that Dual-Pol QPE would likely have challenges

within the melting layer, as was the case in this study.

The NCEP stage II raw radar precipitation estimates

are essentially a non-bias-adjusted mosaicked form of

the legacy Precipitation Processing System (PPS) estimate

that is available with WSR-88Ds. PPS uses the lowest

unblocked/ground-clutter-free elevation of WSR-88D

reflectivity to estimate precipitation rates via a Z–R re-

lationship chosen by the forecaster, according to the

synoptic- or mesoscale situation, that is uniformly applied

to the entire radar field of view. Once PPS precipitation

FIG. 1. (a),(b) Q3RAD 24-h QPE ending at 1200 UTC 22 Dec

2013. Suspect gauges, gauge locations with totals #0.25mm

(0.01 in.) and Q3RAD $6.4mm (0.25 in.), denoted by purple bias

ratio bubbles. Dashed lines denote the RAP model analysis 08C
surface temperature at 1800 UTC 21 Dec (black), 0000 UTC

22 Dec (red), and 1200 UTC 22 Dec 2013 (white).
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estimates are created at a local WSR-88D, the data are

transmitted, in real time, to NCEP. Individual WSR-88D

rainfall estimate fields are merged onto a national

4 km3 4km grid. Inputs frommultiple radars for a given

grid point are averaged using an inverse-distance-

weighting formula (further details on the stage II mo-

saic process can be found at http://www.emc.ncep.noaa.

gov/mmb/ylin/pcpanl/QandA/). When ingested within

MRMS, stage II data are remapped to 1 km 3 1 km

grids. Table 4 lists Z–R relationships typically used by

forecasters to estimate precipitation rates via PPS.

The performance of these three radar-only products

was compared to the NCEP stage IV product, consid-

ered the benchmark for precipitation estimate studies

within the hydrological community. Stage IV estimates

use a combination of forecaster quality-controlled

WSR-88D, satellite, and rain gauge data to create a re-

fined rainfall estimate analysis. It is important to note

that the stage IV estimates are not considered a real-

time product, as there typically is a delay before it is

available to ensure all relevant gauges are included in

the analysis. The NCEP stage IV estimates were

remapped to 1 km3 1 km grids to match the resolutions

of the other products. As only 1200 UTC stage IV 24-h

estimates were available within MRMS; 24-h estimates

from the radar-only products were matched to 1200UTC

for comparison purposes.

Each precipitation estimatewas compared to 1200UTC

24-h accumulations from CoCoRaHS gauges that, over a

number of assessments, have been found to be more

consistent and suitable. As a minimal QC measure to re-

duce erroneous totals, both the radar estimate and the

CoCoRaHS gauges were required to be $2.5mm

(0.10 in.) before including the R/G pair into the analysis.

As most of the evaluated precipitation events spanned

central (CST) and eastern standard time (EST) zones,

there was a 1-h difference between the 1300 UTC (0700

CST) CoCoRaHS gauge totals and the 1200 UTC 24-h

estimates. However, time offset errors affected each of

the evaluated products in the same manner.

Performance assessment statistics were generated based

on all available R/G pairs and by pairs stratified by 24-h

gauge totals #6.4mm (0.25 in.), #12.7mm (0.50 in.),

.12.7mm (0.50 in.), .25.4mm (1.0 in.), and .50.8mm

TABLE 2. Class type and relations used to estimate precipitation for MRMS surface precipitation types east of the Rocky Mountains.

Note that currently, warm and cool stratiform rain types use the same relationships. For further details on precipitation type and Z–R

relationships, please see Zhang et al. (2014).

Surface precipitation type Z–R relationships used

No echo —

Warm stratiform rain Max between Z 5 75(R2) and Z 5 200(R1.6), capped at 50 dBZ

Cool stratiform rain Max between Z 5 75(R2) and Z 5 200(R1.6), capped at 50 dBZ

Convective rain Z 5 300(R1.4), capped at 53 dBZ

Convective rain with hail Z 5 300(R1.4), capped at 49 dBZ

Snow Z 5 75(R2.0)

Tropical convective Z 5 250(R1.2) if high probability of warm rain processes; if moderate probability, a weighted mean

using Z 5 250(R1.2) and Z 5 300(R1.4)

Tropical stratiform Z 5 250(R1.2) if high probability of warm rain processes; if moderate probability, a weighted mean

between Z 5 250(R1.2) and Z 5 200(R1.6)

FIG. 2. (a)Q3RADand (b)Q3GC 24-hQPE ending at 1200UTC 22Dec 2013.White dashed (black dotted) ovals

indicate significant widespread (localized) differences between the two products caused by incorporation of suspect

gauges into Q3GC. Pink long dashed line indicates RAP model surface freezing line at 1200 UTC.
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(2.0 in.). Only matched R/G pairs were used for the sta-

tistical assessment. For statistical measures we used the

mean bias ratio, defined as the ratio of the gauge total to

radar estimate, root-mean-square error (RMSE), mean

absolute error (MAE), and CC to evaluate product per-

formance. For time series analysis and diagnosing error

trends, HADS hourly data were used with rigorous QC

measures.Quality control was primarily applied via a set of

power-law equations (Fig. 3) used to determine the maxi-

mum and minimum hourly gauge values likely for a given

hourly radarQPE (Zhang et al. 2016).As an example from

Fig. 3, the maximum hourly gauge total allowed for an

hourly radarQPE total of 10mm(0.39 in.)would be 35mm

(1.38 in.); a gauge total higher than 35mm would be la-

beled as suspect. Hence, gauge values greater (less) than

the maximum (minimum) thresholds were flagged as out-

liers and not used in the analysis. While not perfect, the

technique was effective in identifying and removing sus-

pect gauges in large datasets.

3. Statistical analysis and results

Figure 4 shows scatterplots and statistical results for

the radar estimate gauge comparisons. As expected, the

forecaster quality-controlled stage IV (Fig. 4d) esti-

mates had the best overall performance with the lowest

RMSE [8.6mm (0.3 in.)] and MAE [5.6mm (0.2 in.)],

highest CC (0.91) and a bias ratio (1.03) closest to 1.0. Of

the radar-only products, the Q3RAD estimates (Fig. 4a)

had the overall next best performance with an RMSE of

13.7mm (0.5 in.), an MAE of 9.7mm (0.4 in.), a CC of

0.77, and a bias ratio of 1.17. While Dual-Pol QPE

(Fig. 4b) had a better bias ratio (1.09) than Q3RAD, it

also had a lower CC (0.62) and higher RMSE [17.8mm

(0.7 in.)] and MAE [12.8mm (0.5 in.)] measures. Dual-

Pol also exhibited the most variability, as was easily seen

when compared to the other scatterplots. Some of this

variability was likely due to differential reflectivity cali-

bration errors, a challenge that should continue to im-

prove as new procedures are developed tomore precisely

calibrate differential reflectivity (Cunningham et al. 2013;

Hoban et al. 2014). However, Dual-Pol also exhibited a

number of overestimated R/G pairs, particularly for

gauge totals between 10 and 45mm, which were not as

prominent or absent in the other products. Subsequent

examination indicated these overestimates to be related

to brightband contamination of reflectivity (further dis-

cussed in section 4). MRMS applied a brightband cor-

rection to reflectivity (Zhang et al. 2016) prior to making

precipitation estimates while stage IV was carefully

quality controlled, both actions of which mitigated the

melting layer effect for these products.

While stage II estimates (Fig. 4c) exhibited a CC

(0.75) similar to Q3RAD, they also had the highest

RMSE [22.4mm (0.9 in.)] and MAE [17.0mm (0.7 in.)]

and the most distinct underestimate bias ratio (2.67) of

all the products. The authors noted that stage II esti-

mates may be different than the single-radar PPS esti-

mates from which stage II was generated. A comparison

between the two products (not shown) indicated stage II

estimates often exhibited a dampened brightband con-

tamination in the melting layer but also displayed a

much stronger underestimate bias ratio. The difference

is possibly a result of the stage II mosaicking scheme that

takes an inverse-distance-weighted mean of multiple

radar PPS estimates in overlapping regions. However, a

high QPE from the nearest radar may still be dampened

by relatively lower QPE values from data taken higher

above ground or from farther-away radars. This would

also act to dampen any brightband contamination that

was consistently observed in this study.

Table 5 indicated that all the radar-only products

underestimated (bias ratio.1.0) precipitation for gauge

totals .12.7mm (0.5 in.). This trend was more pro-

nounced for the higher [.25.4mm (1.0 in.) and.50.8mm

(2.0 in.)] gauge totals, with a corresponding increase in

TABLE 3. Class type, rain-rate factor, and complete relationship

used to estimate precipitation for Dual-Pol HHC classes.

HHC class Factor

Precipitation

calculated via

Ground clutter — —

Unknown — —

No echo — —

Biological — —

Light to moderate rain 1.0 R(Z, ZDR)

Heavy rain 1.0 R(Z, ZDR)

Big drops 1.0 R(Z, ZDR)

Hail/rain below melting layer top 1.0 R(KDP)

Hail/rain above melting layer top 0.8 0.8R(Z)

Graupel 0.8 0.8R(Z)

Wet snow 0.6 0.6R(Z)

Dry snow (below melting layer top) 1.0 1.0R(Z)

Dry snow (above melting layer top) 2.8 2.8R(Z)

Ice crystals 2.8 2.8R(Z)

TABLE 4. TheZ–R relationships and recommended usage for the

legacy PPS (adapted from the WSR-88D Operator Handbook;

Radar Operations Center 2015).

Z–R

relationships Recommended use

Z 5 300(R1.4) Deep convection

Z 5 250(R1.2) Tropical convective systems

Z 5 200(R1.6) General stratiform rain

Z 5 130(R2.0) Winter stratiform and orographic rain

east of Rockies

Z 5 75(R2.0) Winter stratiform and orographic rain west

of Rockies
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RMSE andMAE. This was not surprising, as radar beam

overshoot is more common during the cool season be-

cause of shallower precipitation systems and lower

cloud bases. This effect likely was partially mitigated by

the different mosaic processes used by Q3RAD, mo-

saicked Dual-Pol, and the stage II products. While

Q3RAD exhibited a higher tendency to underestimate

than Dual-Pol, it generally had lower RMSE andMAE

measures for all but the highest gauge totals [.50.8mm

(2.0 in.)] where the errors were similar (differences

,1.0mm). Overall, both Q3RAD and Dual-Pol ex-

hibited lower RMSE and MAE than stage II for

totals.12.7mm (0.5 in.). As a contrast, the benchmark

stage IV estimate exhibited RMSE that ranged from

38% to 67% lower than that of Q3RAD.

For precipitation totals #12.7mm (0.5 in.), Q3RAD,

Dual-Pol, and stage IV exhibited a distinct overestimate

bias ratio while all of the products generally had low

correlation coefficients, most below 0.30 (not shown). A

significant portion of these errors was likely due to

precipitation evaporating/sublimating before reaching

the ground and/or gauge undercatch in snow and light

rain when significant windwas present. An advancement

of the seamless hybrid scan reflectivity mosaic algorithm

was installed in MRMS during the spring of 2014 to help

mitigate errors due to evaporation and sublimation. It

compares multiple radar observations at an overlapping

point and ensures the lowest radar bin has significant

echoes present before coding a geographical point as

having precipitation. However, it will still be unable to

FIG. 3. Power laws used to assist in QC of R/G pairs. The upper

(lower) curve represents the upper (lower) bound for gauge values

for a given Q3RAD hourly total.

FIG. 4. The 24-h QPE from (a) Q3RAD, (b) Dual-Pol QPE, (c) stage II, and (d) stage IV vs CoCoRaHS gauges

for all cool season cases. In the legend, B, R, and C denote bias ratio, RMSE, and CC, respectively. Note that the

results shown used matched R/G pairs for each product.
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determine whether echoes seen at the lowest radar bin

actually reach the ground, especially at farther ranges.

4. Precipitation event statistics

a. Mean bias, RMSE, and correlation for each event

Figure 5 showed the mean bias ratio for each evalu-

ated product for each cool season precipitation event.

As expected because of the forecaster quality control,

stage IV exhibited a bias ratio consistently closer to one

than observed with Q3RAD and Dual-Pol QPE. Stage

II exhibited a distinct tendency to underestimate pre-

cipitation with mean bias ratios .2.00 for all but one

event. Figure 6 showed the RMSE for each product for

each precipitation event. Stage IV exhibited the lowest

RMSE, less than 9.0mm for all but two events, while

stage II had the highest RMSE, generally more than

15.0mm for all but three events. While stage IV had the

lowest RMSE per event, Q3RAD had the next lowest,

;25% better than Dual-Pol. For six of the nine events,

Q3RADRMSEwas comparable to the stage IVRMSE,

that is, the difference between the RMSE measures

was #6.4mm (0.25 in.). This was significant as Q3RAD

is a real-time product updated every 2min while stage

IV estimates are available after a significant time delay.

Stage IV exhibited the highest CC values (not shown)

for each event; Q3RAD generally exhibited the next

best values followed by stage II and Dual-Pol. The

generally lower correlation coefficients observed with

Dual-Pol were due to the aforementioned calibration

and melting layer challenges of which the following ex-

amples are notable.

b. Midwestern U.S. precipitation event of 5–6 January
2014

The combination of an intense, highly amplified

upper-level storm system and relativelymoist air flowing

up and over an arctic cold front produced moderate to

very heavy snow, with some totals as high as 380mm

(15 in.), across much of Illinois, Indiana, southern

Michigan, and northwesternOhio.However, over extreme

southeastern (southwestern) sections of Illinois (Indiana),

TABLE 5. The number of R/G pairs, gauge-to-radar estimate bias ratio, RMSE, and MAE for each precipitation estimate stratified by

gauge amount.

Product 24-h gauge amount No. R/G pairs Bias ratio RMSE (mm) MAE (mm)

Q3RAD G # 6.4mm (0.25 in.) 597 0.38 10.3 8.0

G # 12.7mm (0.50 in.) 2323 0.64 8.4 6.2

G . 12.7mm (0.50 in.) 6892 1.27 15.1 10.8

G . 25.4mm (1.00 in.) 3566 1.38 19.4 15.0

G . 50.8mm (2.00 in.) 1050 1.48 28.9 24.2

Dual-Pol QPE G # 6.4mm (0.25 in.) 597 0.36 13.3 8.9

G # 12.7mm (0.50 in.) 2323 0.60 12.3 7.9

G . 12.7mm (0.50 in.) 6892 1.17 19.3 14.4

G . 25.4mm (1.00 in.) 3566 1.30 22.8 18.3

G . 50.8mm (2.00 in.) 1050 1.37 29.8 24.9

Stage II G # 6.4mm (0.25 in.) 597 1.02 3.0 2.1

G # 12.7mm (0.50 in.) 2323 1.71 5.3 4.5

G . 12.7mm (0.50 in.) 6892 2.81 25.7 21.3

G . 25.4mm (1.00 in.) 3566 2.84 33.5 29.9

G . 50.8mm (2.00 in.) 1050 2.75 48.6 45.5

Stage IV G # 6.4mm (0.25 in.) 597 0.50 7.7 5.1

G # 12.7mm (0.50 in.) 2323 0.76 6.0 3.8

G . 12.7mm (0.50 in.) 6892 1.06 9.4 6.2

G . 25.4mm (1.00 in.) 3566 1.07 11.9 8.2

G . 50.8mm (2.00 in.) 1050 1.06 17.3 11.8

FIG. 5. Q3RAD (blue line with triangles), Dual-Pol QPE (green

line with squares), stage II (red line with circles), and stage IV

(black line with diamonds) mean bias ratio statistics for each cool

season case evaluated.
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snow totals were much lower as synoptic observations

indicated temperatures ranged from 0.08 to 78C (328–
448F) between 1200 and 1700 UTC that resulted in a

variety of precipitation types across the area. The au-

thors evaluated radar reflectivity and differential re-

flectivity calibration in the region of interest using the

radar reflectivity comparison tool (RRCT). Gourley

et al. (2003) described the tool’s function, which is to

match grid points between two WSR-88Ds meeting

minimal horizontal, vertical, and temporal displacement

criteria. Comparisons between matching grid points are

made if reflectivity meets minimal QC and sample size

requirements. More recently, the tool was upgraded to

include ZDR comparisons between two radars using the

same methodology. The results give a measure of the

relative Z and ZDR calibration between a single radar

and its neighbors. For a robust performance of Dual-Pol

QPE, Z and ZDR would need to be calibrated to within

1 dBZ and 0.1 dB, respectively, although formoderate to

heavy rain the ZDR requirement could be relaxed to

0.2 dB (Ryzhkov et al. 2005). For this event, RRCT in-

dicated Z values were within 61dBZ of each other, the

exception being the Evansville, Indiana, WSR-88D

(KVWX), which was ;1.5 dBZ higher than neighbor-

ing radars. For ZDR, most radars, where precipitation

occurred, were within 60.15dB of each other. The excep-

tions were the Indianapolis, Indiana, WSR-88D (KIND)

and theWilmington, Ohio,WSR-88D (KILN), which were

0.16 dB higher and ;0.5 dB lower, respectively, than

neighboring radars. So, for example, any R(Z)-based

precipitation estimates from KVWX would likely

be biased high because of the higher reflectivity. The

R(Z, ZDR) base estimates for KILN would be biased

high because of the low biasedZDR. Hence,Z calibration

challenges contributed to the error of all the evaluated

products, while ZDR calibration contributed to the

Dual-Pol QPE errors alone.

Figure 7 showed 24-h accumulations of Q3RAD and

Dual-Pol QPE versus CoCoRaHS gauge totals. Q3RAD

exhibited an underestimate bias ratio of 1.17, while the

Dual-Pol QPE bias ratio was 1.0. However, Dual-Pol

QPE exhibited a distinct group of overestimateR/G pairs

for gauge totals between 10 and 45mm (dashed red in

Fig. 7), a pattern similar to that seen in Fig. 4b. Q3RAD

exhibitedmuch fewer overestimateR/G pairs in the same

region. The evidence suggested the possibility that

brightband contamination in the reflectivity data affected

the Dual-Pol estimates for theseR/G pairs. To determine

if this was the case, 24-h accumulations of Dual-Pol QPE,

Q3RADestimates derived from reflectivity not corrected

for brightband contamination (Q3RADnoncor), and

Q3RAD estimates derived from brightband-corrected

reflectivity were examined andwere shown in Fig. 8. The

pattern seen in the Dual-Pol QPE and Q3RADnoncor

estimates, a semicurved arc, indicated brightband con-

tamination was present in the noncorrected reflectivity

fields. Figure 9 further confirmed the presence of a bright

band, as a reflectivity cross section indicated the highest

FIG. 6. As in Fig. 5, but for RMSE.

FIG. 7. (top) Q3RAD and (bottom) Dual-Pol quantitative pre-

cipitation estimates vs CoCoRaHS gauge totals for the 24-h period

ending at 1200UTC6 Jan 2014 (legend as in Fig. 4). Dashed red oval

represents region of overestimates associated with melting layer.
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Z values were generally horizontally distributed and

mostly confined below 2.0 km, too low for intense con-

vection. The band of lower CC values near the radar and

the large variety (snow, sleet, and rain) of precipitation

types seen in surface observations (not shown) indicated

the melting level nearly extended to the ground.

Figure 10 showed the digital hybrid reflectivity

(DHR), CC, HHC algorithm, and the 1-h Dual-Pol

QPE for KVWX during a period where the highest

1-h Dual-Pol QPE accumulations were generated. The

1-h Dual-Pol QPE accumulations .15.2mm (0.6 in.)

were generally collocated with the region of higher

reflectivity and CC values ,0.96. However, Dual-Pol

QPE accumulations .50.8mm (2.0 in.) were offset

north of the maximum Z/minimum CC values and lay

across a region ZDR values #0.5 dB (not shown) be-

tween 1600 and 1700 UTC. The ZDR values in this

region generally were in the range from 0.5 to 22.0

dB, the lower values likely being questionable. Dur-

ing the same period, the HHC primarily coded radar

echoes as light to moderate rain, graupel, or rain/hail.

Time series analysis (not shown) indicated the highest

rain rates, up to 200mmh21 (7.9 in. h21), occurred

for the light to moderate rain classification. The

appearance of this HHC class at an altitude at the top

and above the melting layer is surprising in and of

itself. The available data indicated the HHC was er-

roneous because of an incorrectly identified melting

layer from the WSR-88D MLDA. The Dual-Pol QPE

equation used to estimate precipitation rates in light

to moderate rain was

R(Z,Z
DR

)5 0:0067(Z0:927)(Z23:43
DR ), (1)

with R(Z, ZDR) (mmh21) and where Z (ZDR) is re-

flectivity (differential reflectivity) in linear units. Higher

Z and lowerZDR values both act to raise the rain rates in

Eq. (1), which is particularly sensitive for ZDR # 0 dB

and Z $ 40dBZ, of which both were present over the

highest Dual-Pol QPE accumulations. Therefore, the

much higher Dual-Pol QPE accumulations were most

likely due to a combination of 1) incorrect precipitation

classification around the melting layer, 2) brightband

contamination within the melting layer, 3) low ZDR

values near the top of the melting layer, and 4) the

sensitivity of Eq. (1) to factors 1–3.

Even though there appeared to be more rain than

sleet and snow for the brightband region during the

FIG. 8. (a) Dual-Pol QPE, (b) Q3RAD not corrected for brightband contamination, and (c) Q3RAD estimates for

the 24-h period ending at 1200 UTC 6 Jan 2014.
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hour, both automatic and CoCoRaHS gauges were at

least partially impacted, particularly after 2100 UTC,

when all precipitation was snow. Automatic reporting

gauges were impacted the most, but CoCoRaHS data

were collected by volunteers trained to handle such

impacts and represent the best estimate of ground truth

in the region. There were only four CoCoRaHS gauge

locations over the easternmost portion of the higher

FIG. 10. (a) DHR, (b) 0.58 elevation angle CC, and (c) HHC algorithm images from KVWX at 1605 UTC 5 Jan

2014. (d) TheDual-Pol precipitation estimate is also shown for the 1-h period ending at 1700UTC of the same date.

The dashed (solid) black line approximately outlines 1-h precipitation totals $15.2mm (0.6 in.) [50.8mm (2.0 in.)].

FIG. 9. (a) Reflectivity mosaic cross section, (b) 0.58 elevation angle reflectivity with white line indicating location of
cross section, and (c) CC at 1650 UTC 6 Jan 2014.
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Dual-Pol QPE accumulations, where 24-h estimates

ranged from 76.0 to 137.0mm (3.0–5.4 in.). Using these

gauges, the absolute value of the 24-h Dual-Pol QPE

minus gauge error averaged 69.1mm (2.72 in.); in con-

trast, the absolute value of the Q3RAD minus gauge

error was 5.5mm (0.22 in.), representing a substantial

reduction in the error.

c. Southeastern U.S. precipitation event of 28–29
January 2014

An arctic air mass was in place over much of the

southeastern United States on 28 and 29 January 2014.

An upper trough, jet stream dynamics, and moisture

flowing over the colder air resulted in the development

of freezing rain, sleet, and snow over large sections of

the region. Using the RRCT, most radar Z values ap-

peared to be within 61dBZ of each other; ZDR clearly

indicated some sites with biases above 0.30 dB while

others were between 0.15 and 0.30 dB. Ordinarily, the

ZDR calibration would likely affect some of the precipi-

tation estimates; however, much of the area was below

freezing at the surface, and as a result most Dual-Pol

quantitative precipitation estimates did not use Eq. (1).

Instead, when a radar echo was classified as dry or

wet snow, ice crystals, graupel, or rain/hail (above the

melting layer only), precipitation rates were calculated

via a factor, dependent on the echo classification (see

Table 3), multiplied by the convective Z–R relation-

ship given by

R(Z)5 0:0171(Z0:714), (2)

with R(Z) (mmh21) and Z (linear dBZ units). This

equation is more often recognized in the following form:

Z5 300(R1:4), (3)

where the variables and units are the same as in Eq. (2).

Figure 11 showed the scatterplots for Q3RAD and

Dual-Pol QPE; both estimates exhibited large variabil-

ity, an overestimated bias ratio, and poor correlation.

Similar to the previous case, Dual-Pol QPE exhibited a

number of overestimates for gauge totals in the 10–

35mm range (dashed red in Fig. 11) that was not as

prevalent in Q3RAD. Once again, this suggested

brightband contamination affected the Dual-Pol esti-

mates for these R/G pairs. Figure 12 showed the 24-h

mosaicked estimates around the Jackson, Mississippi,

WSR-88D (KDGX). The observed boundaries are from

the nearest-neighbor method used to create the mosaic,

with the higher totals from KDGX. The Dual-Pol

quantitative precipitation estimates exhibited maxi-

mum liquid precipitation totals of 50.8–76.2mm (2.0–

3.0 in.), substantially more than Q3RADnoncor and

Q3RAD. For this case, the Q3RADnoncor was likely

significantly lower than the Dual-Pol quantitative pre-

cipitation estimate for two reasons. The first is related to

the MRMS mosaic process used to develop the Z field

that is in turn used to create the precipitation estimate: if

more than one radar was available for a grid point, a

weighted mean was taken (Zhang et al. 2011), which

may act to smooth out spuriously high Z. Second, once

the mosaic Z field is created, a unique Z–R relation is

applied dependent on the radar echoes’ classification. This

is in contrast to what is used by the Dual-Pol quantitative

precipitation estimates, which were calculated using the

convective Z–R relationship [Eq. (2)] multiplied by a co-

efficient (Table 3) that is dependent on the HHC.

Figure 13 showed the DHR, CC, HHC algorithm, and

the 1-h Dual-Pol quantitative precipitation estimate for

KDGX during a period where the highest 1-h Dual-Pol

QPE accumulations were generated. A calibration

check of the KDGX indicated it appeared reasonably

calibrated in Z, although it showed a significantly high

(at least 0.4 dB) bias in ZDR. The CC data clearly

indicated a melting layer to the south of the radar, but

precipitation had refrozen by the time it reached the

FIG. 11. As in Fig. 7, but for the 24-h period ending at 1200 UTC

29 Jan 2014.
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ground, as indicated by surface observations (not

shown). The HHC between 1600 and 1700 UTC classi-

fied radar echoes as either dry snow, the most common

classification, or as graupel (in areas with higher re-

flectivity). The Dual-Pol QPE 24-h totals are quite high

throughout the melting layer, likely as a result of

brightband contamination and the use of the empirical

relationships (Table 3).

There were five CoCoRaHS gauges within the

brightband region that were available for comparison.

The absolute value of the Dual-Pol QPE minus gauge

24-h accumulation error within the melting layer region

averaged 33.3mm (1.31 in.); in contrast, the absolute

value of the Q3RAD minus gauge error was 14.2mm

(0.56 in.), representing a significant reduction in the er-

ror. While it is true that the CoCoRaHS gauges may

have suffered some impacts such as gauge undercatch in

snow and/or ice accumulation, within the catchment

these are the best estimates to what actually reached the

ground in the area of interest.

d. Ohio Valley/southeastern U.S. precipitation event
of 2–3 February 2014

Acold front, associatedwith arctic air, was slowlymoving

eastward across the Ohio Valley and the southeastern

United States on 2 and 3 February 2014. Frozen pre-

cipitation was in progress over portions of Indiana and

northwestern Ohio while rain was occurring southward

as moisture was isentropically lifted up and over the

colder air. Another area of precipitation, farther

southwest of the Ohio Valley region, developed in ad-

vance of a 500-hPa short wave. This area of precipitation

moved east-northeastward into the region by the even-

ing of 2 February, resulting inmoderate to heavy rainfall

in the Southeast and a variety of precipitation types over

the Ohio Valley and the Appalachian Mountains. A

check of radar calibration across the area indicated

the Paducah, Kentucky, WSR-88D (KPAH); KILN;

KVWX; and the Knoxville, Tennessee, WSR-88D

(KMRX) were at least 1.0 dBZ too warm or too cool

than neighboring radars. Otherwise, the rest of the

radars in the region were within 61 dBZ. With a cou-

ple of exceptions, most radar ZDR values were within

0.15–0.30 dB of each other. Therefore, ZDR (Z) cali-

bration errors likely affected Dual-Pol QPE (all the

estimates). Figure 14 showed the Q3RAD and Dual-

Pol QPE scatterplots for this event; Dual-Pol QPE

exhibited more overestimated R/G pairs for gauge

totals between 10 and 45mm (dashed red in Fig. 14)

than Q3RAD for gauge totals. As with the other

FIG. 12. As in Fig. 8, but for the 24-h period ending at 1200 UTC 29 Jan 2014.

802 JOURNAL OF HYDROMETEOROLOGY VOLUME 17

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 07:14 PM UTC



examples, this suggested brightband contamination was

the reason for the overestimated R/G pairs.

Figure 15 shows DHR, CC, HHC data, and the 1-h

Dual-Pol quantitative precipitation estimate for the

Jackson, Kentucky, WSR-88D (KJKL) during a time

where the highest 1-h Dual-Pol QPE accumulations

were being generated. This radar was reasonably cali-

brated with its neighbors with regards to Z with the

mean ZDR bias around 0.15 dB. The CC data between

0400 and 0500 UTC clearly indicated a melting layer,

with values below 0.97, that is nearer to the ground in the

northwest half of the radar field of view. This is cor-

roborated by surface observations that indicated pre-

cipitation was mostly frozen in this region but mainly

liquid elsewhere. Themelting layer in the northwest half

also coincided with higher reflectivity values; the HHC,

in the region of higher Dual-Pol QPE accumulations,

generally classified echoes as light to moderate rain. As

mentioned previously, Eq. (1) was used to calculate

precipitation estimates for this HHC. It appears the

overestimates are primarily a result of brightband-

contaminated reflectivity, although lower ZDR values,

in the 0.0–1.25 dB range, and the sensitivity of Eq. (1) to

higher Z and lower ZDR likely contributed as well.

A comparison was made between Dual-Pol quan-

titative precipitation estimates and seven available

CoCoRaHS gauges within the region of greatest 24-h

accumulations (the arc region). The absolute value of

theDual-Pol QPEminus gauge error within the area of

interest averaged 33.8mm (1.33 in.); in contrast, the

magnitude of the Q3RAD minus gauge error was

11.5mm (0.46 in.), a significant reduction in error. It

should be noted that there were a couple of gauge sites

where Q3RAD actually underestimated when com-

pared to the CoCoRaHS 24-h totals, indicating the

brightband correction applied to the reflectivity data

may have been too aggressive. However, the error

magnitudes observed were substantially lower than

that seen with Dual-Pol QPE for each gauge.

5. Q3RAD precipitation type analysis

Using hourly gauge data, an analysis was conducted of

the MRMS precipitation type contributions to the

Q3RAD totals for over- and underestimated R/G pairs

to better understand what may be causing some of the

Q3RADerror trends seen in the statistics. MRMS uses a

‘‘surface precipitation type’’ algorithm to classify radar

FIG. 13. (a) DHR, (b) 0.58 elevation angle CC, and (c) HHC algorithm images from KDGX at 1650 UTC 28 Jan

2014. (d) TheDual-Pol precipitation estimate is also shown for the 1-h period ending at 1700UTC of the same date.

The dashed black line approximately outlines 1-h precipitation totals $15.2mm (0.6 in.).
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data based on a combination of echo characteristics and

model data in order to assign a unique Z–R relationship

for each class (Zhang et al. 2011, 2014). There are seven

possible precipitation classifications: 1) warm stratiform

(WS), 2) cool stratiform (CS), 3) tropical stratiform

(TS), 4) convective (CO), 5) hail (HL), 6) tropical con-

vective (TC), and 7) snow (SN). If no radar echoes are

present for a given time step, then the pixel in question is

assigned the designation ‘‘no echo’’ (NE). To determine

the importance of the stratiform and convective precipi-

tation types toR/G pair over- and underestimated values,

the various precipitation classifications were combined

into three categories: stratiform (WS, CS, and TS), con-

vective (CO,HL, and TC), and snow (SN).While most of

the SN classifications were generally stratiform-like radar

echoes with model temperatures indicating the surface

was at or below freezing, the precipitation type was still

separated out to identify trends related to gauge chal-

lenges with measuring frozen precipitation.

To determine what precipitation categories contributed

most to the Q3RAD totals for under- and overestimated

R/G pairs, the Q3RAD estimate (the rate divided by the

number of time steps per hour) per time step for each

category was calculated for all hourly R/G pairs. From

this, the total Q3RAD total for each precipitation cat-

egory and the percent contribution to the Q3RAD total

for over- and underestimated R/G pairs could be cal-

culated.Overall, there weremore than 3.5 times asmany

first Standard Deviation of Radar Estimate—Gauge

Errors (SDE) underestimates than overestimates in the

data, confirming the Q3RAD underestimate tendency

discussed earlier using CoCoRaHS data. The average

percent Q3RAD contribution to the total for each pre-

cipitation category and the standard deviation of the

average for the nine evaluated cases were calculated and

graphed for all R/G pairs and first SDE over- and un-

derestimates (Fig. 16).

For all R/G pairs, most of the Q3RAD contribution

came from the stratiform rain categories followed by

snow and convection, which is not surprising for cool

season precipitation events. For first SDE overestimate

error R/G pairs, most of the Q3RAD contribution came

from the stratiform (;56%) and snow (;37%) cate-

gories; convection classifications contributed the least

(,7%) to the Q3RAD totals. The Q3RAD tendency

was generally observed for the lighter 24-h gauge totals

[e.g., #6.4mm (0.25 in.)] as discussed in section 3. A

closer examination of 24-h accumulations for each pre-

cipitation event showed gauge totals #6.4mm (0.25 in.)

were generally located along the periphery of pre-

cipitation accumulations and on the cold air side of

winter cyclones. An examination of hourly synoptic

observations revealed drier air and significant wind

speeds were often present in these regions. Surface

dewpoint depressions (DD) typically ranged from 2.28 to
5.68C (48–108F) and sustained wind speeds typically

ranged from 5 to 10m s21 [10–20 knots (kt; 1 kt 5
0.51m s21)]. Under those conditions, not only would

there be some evaporation/sublimation of falling pre-

cipitation, but also significant gauge undercatch effects

(Rasmussen et al. 2012; Goodison and Yang 1996) due

to the wind, both of which would cause Q3RAD over-

estimates. In some of the overestimate cases examined,

precipitation developed and fell into a layer of cold, dry

air, allowing substantial evaporation or sublimation to

occur. Figure 17 shows an example from a winter storm

that developed over the Southeast on 28 and 29 January

2014. The 1307 UTC surface observations clearly

showed dewpoint depressions of 11.18–16.78C (208–
308F) over the region of interest. As precipitation be-

gan to develop, some of it evaporated before reaching

the ground. The echoes seen in the radar cross section

are relatively weak, with some spots suggesting little

reaching the ground. The time series for two gauges

along the cross section indicated over 2.5mm (0.10 in.)

of Q3RAD precipitation were generated from the radar

FIG. 14. As in Fig. 7, but for the 24-h period ending at 1200 UTC

3 Feb 2014.
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data, but none were recorded by the gauges. Observa-

tions indicated temperatures remained above freezing at

Upatoi Creek at Fort Benning (UPAG1) [Macon

(MCN)] until approximately 1800 UTC 28 February

(0000UTC 29 February), so gauge impacts due to frozen

precipitation were unlikely. Note the Rapid Refresh

(RAP) analysis temperature and dewpoint spread de-

creased until the gauge reported precipitation indicating

atmospheric moistening via evaporation (sublimation) of

rain drops (snow) was likely taking place. In this same

case, there were other locations where the wind was at or

above 5ms21 (10kt) with light rain, freezing rain, or snow

occurring, so gauge undercatch likely played a significant

role in the overestimates as well. It is important to note

that with the cases examined in this study, overestimates

were found mainly in the cold air side of winter cyclones.

This will not always be the case, as radar quantitative

precipitation overestimates are always possible when-

ever layers of relatively dry air are present between

weak radar echoes and the ground and/or significant

surface wind speeds are present. Other possible causes

for Q3RAD overestimates would be Z–R limitations,

not enough correction applied to brightband contami-

nation, and improper radar calibration.

For first SDE underestimated R/G pairs, the chief

contribution to the Q3RAD totals were from the strat-

iform category (82.8%), followed by snow (8.6%) and

convection (8.6%). Further, the CS precipitation type

contributed the most to the underestimate errors. A

significant amount of the error was likely due to the

radar beam partially overshooting the generally lower

cloud bases and shallower precipitation systems found

during the wintertime, an example of which is illustrated

in Fig. 18. There were few underestimated R/G pairs

(Fig. 18, black dots) from northwestern Arkansas to

northwestern Tennessee and north of the Ohio River,

where gauges were impacted by frozen precipitation. In

the warmer air, underestimate R/G pairs were quite

prevalent, a number of which were clustered in regions

where the bottom of the radar beam is at least

1 km above ground level. Analyses for the events on 3

and 13 February 2014 indicated similar tendencies (not

shown). To get a more quantitative look at radar beam

overshoot, the percentage of R 2 G , 0 (underesti-

mates) R/G pairs was plotted as a function of the

seamless hybrid scan reflectivity beam bottom height

(H-SHSR) above the ground (Fig. 19). The percentage

of underestimates increased linearly from approximately

FIG. 15. (a) DHR, (b) 0.58 elevation angle CC, and (c) HHC algorithm images from KJKL at 0455 UTC 03 Feb

2014. (d) TheDual-Pol precipitation estimate is also shown for the 1-h period ending at 0500UTC of the same date.

The dashed black line approximately outlines 1-h precipitation totals $15.2mm (0.6 in.).
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45% at 0.25km to near 70% at 2.0km, showing a clear de-

pendency on increasing beam height/distance from radar.

While some underestimates may be a result of partial

beam blockage, there are also clear examples where

unrepresentative Z–R relationships likely play a part in

the error. Once again, an examination of each pre-

cipitation event revealed that underestimates$25.4mm

(1.0 in.) primarily occurred over a baroclinic zone along

and behind a frontal region. For six of the events, surface

observations indicated moderate to heavy rain generally

occurred in temperatures ranging from 2.08 to 12.08C
(34.08–558F) under saturated conditions (relative

humidity .90%). Figures 20a–d showed time series of

four gauges, all of which were located in a region of

heavy precipitation that fell over portions of Missouri,

Kentucky, and Indiana on 21–22 December 2013. The

time series showed hourly gauge, Q3RAD, Q3RAD not

corrected for brightband contamination (Q3RADnoncor),

and the surface precipitation type. The gauges chosen

each had over 85mm (3.3 in.) of precipitationmeasured

over the 24-h period. Radar (not shown) indicated

primarily stratiform rain with brief periods of convec-

tion. While brightband corrections were made for

Q3RAD in Figs. 20b and 20d, theQ3RADnoncor was still

substantially less than the hourly gauge totals. Overall,

the Q3RAD and Q3RADnoncor estimates were sub-

stantially less than the hourly gauge totals and illus-

trated that the Z–R relationships used to estimate rain

FIG. 17. (a) Reflectivity cross section, (b) 1307 UTC surface synoptic observations, and time series for the gauges

(c)UPAG1 and (d)MCN for the 24-h period ending at 1200UTC29 Jan 2014. Precipitation type is given by blue dots,

gauge totals in purple, andQ3RAD in black. TheRAP analysis surface temperature and dewpoint are given in red and

green, respectively. Approximate location of reflectivity cross section in (a) is given by dashed black line in (b).

FIG. 16. Percent contribution to Q3RAD totals for all R/G pairs

and the first SDE over- (O1) and underestimated (U1) R/G pairs.

Red and light blue horizontal hashes mark the first SDE un-

certainty of the nine-case average. St, Co, and Sn denote stratiform,

convective, and snow categories, respectively.

806 JOURNAL OF HYDROMETEOROLOGY VOLUME 17

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 07:14 PM UTC



rates in this region were not representative of the mi-

crophysical environment present. In addition to beam

overshoot and Z–R limitations, overcorrection of bright-

band reflectivity and/or improper radar calibration can

cause underestimates. Finally, thawing gauges can cause

underestimates via gauges previously stuck or clogged

with ice and snow within the gauge orifice beginning to

melt as temperatures rise and/or new precipitation be-

ginning to fall. The thawing frozen precipitation causes

tipping-bucket gauges to report a precipitation total more

than what actually fell [see Martinaitis et al. (2015) for an

example].

6. Conclusions

Examination of nine weather events east of the Rocky

Mountains quickly revealed challenges in evaluating

radar precipitation estimates during the cool season.

Analysis showed a large number of automatic gauges

likely became stuck in freezing temperatures when fro-

zen precipitation was present. Since stuck gauges ad-

versely impacted local gauge bias-adjusted radar QPE,

this study only evaluated radar-only precipitation esti-

mates. Using quality-controlled gauges and the NCEP

stage IV analysis as a benchmark for comparison pur-

poses, Q3RAD, Dual-Pol QPE, and stage II exhibited a

tendency to underestimate precipitation, a trend more

pronounced for higher gauge totals. A significant por-

tion of this error could be attributed to radar beam

overshoot. Stage II had the highest RMSE and MAE

and the strongest underestimate tendency of all the

products. Dual-Pol QPE had a slightly better bias ratio

than Q3RAD, but it also had a higher RMSE and MAE

FIG. 18. (a) The 24-hQ3RADaccumulation and (b) the height of

the bottom of the radar beam (km) with locations of un-

derestimates of at least the first SDE (black dots) for the period

ending at 1200 UTC 5 Feb 2014.

FIG. 19. Percentage of Q3RAD underestimates (blue), first SDE underestimates (red), and

gauge-to-radar estimate mean bias ratio (green) as a function of radar beam bottom height.

Dotted black line indicates percentage of the data available for a given height bin.
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as well as lower correlation coefficient values. Q3RAD

had the overall best performance of the three radar-only

products. For lighter 24-h precipitation totals Q3RAD,

Dual-Pol, and even stage IV exhibited a distinct over-

estimate bias, likely related to evaporation/sublimation

of precipitation before reaching the ground and/or

gauge undercatch.

Event by event statistics showed both Dual-Pol and

Q3RAD bias ratios stayed fairly close, generally within

0.25, to the stage IV benchmark. Q3RAD tended to

have lower RMSE and MAE than Dual-Pol and stage

II. Further, Q3RAD RMSE was comparable to the

stage IVRMSE [e.g., the difference#6.4mm (0.25 in.)]

for six of the events evaluated. Dual-Pol RMSE and

MAE and lower correlation coefficient values were

partly related to both Z and ZDR calibration errors;

however, a significant portion of the error was related

to challenges regarding brightband contamination in

the melting layer, of which some notable examples

were shown. These challenges were anticipated, and

work continues today on developing new techniques to

further improve the Dual-Pol QPE system (Ryzhkov

et al. 2014).

Analysis of MRMS precipitation classification con-

tributions to Q3RAD totals for overestimate R/G pairs

indicated the stratiform (chiefly the cool stratiform type)

and snow categories contributed the highest percent-

ages. A significant portion of this error was related to

precipitation evaporating or sublimating prior to reaching

the ground and to gauge undercatch. Other factors such as

Z–R limitations and improper radar calibration also

played a role. Analysis indicated the cool stratiform type

also was associated with underestimate errors, the pri-

mary factors being radar beam overshoot and Z–R limi-

tations, although other factors are significant as well.

There are some future investigations that are worthy

of mentioning as they are related to improvement of

precipitation estimates. First, an analysis of radar-only

QPE performance east of the Rockies during the warm

season as well as analysis for west of the Rockies is

currently in progress. Second, work is underway to in-

tegrate Dual-Pol information into MRMS Q3RAD

precipitation estimates via the use of specific attenuation

(Ryzhkov et al. 2014; Wang et al. 2014). Third, a future

project will likely examine the feasibility of improving

Dual-Pol quantitative precipitation estimates in the

FIG. 20. Time series of the gauges (a) ECRI3, (b) SKNM7, (c) TMLM7, and (d) PAH for the 24-h period

ending at 1200 UTC 22 Dec 2013. Precipitation type is given by blue dots, gauge totals in purple, Q3RAD in

black, and Q3RADnoncor in green. Note that there is essentially no difference between Q3RAD and

Q3RADnoncor in (a) and (c).
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melting layer by incorporating a brightband correction

to WSR-88D reflectivity, similar to what has been

implemented in MRMS (Zhang and Qi 2010; Zhang

et al. 2011). Finally, a probabilistic approach to QPE,

similar to Kirstetter et al. (2015), will be further ex-

plored in the effort to further improve MRMS pre-

cipitation estimates.

Acknowledgments. We thank Alexander Ryzhkov
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